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Abstract. It is a striking feature of the macroscopic theory of forces in an electric or magnetic
field that the corresponding stresses can be described by tensors of a completely analogous form
while the corresponding force laws are quite different. It is shown that this feature stems from
the fact that a more general mathematical equation that links a vector term to the corresponding
tensor divergence contains the electromechanical and magnetomechanical force–stress relations
under consideration as special cases. This relation is of some use in organizing the knowledge
on electrostatic and magnetostatic stresses and in elucidating under which physical conditions a
simple transition from the force law to the tensor expression is possible.

1. Introduction

It is often convenient to express the force densityEf acting on a solid or liquid using the stress
tensorσ [1]: ∫

V

Ef dV =◦∫∫
∂V

σ dES (1)

whereV is the volume andS is the corresponding closed surface. The force density and the
stress tensor are then linked by what can be considered a generalization of Gauss’s theorem:∫

V

fi dV =
∫
V

∂jσij dV =◦∫∫
∂V

σij dSj (2)

where∂j is used as shorthand for∂/∂xj . In this article, the Einstein convention for summation
is used, i.e., if an index occurs twice in a term, summation with respect to that index is implicitly
understood. It follows from equation (2) that the force density can be interpreted as the tensor
divergence of the stress tensor:

fi = ∂jσij . (3)

A well-known example is Hooke’s law in anisotropic form [2]

Yij = cijmnεmn (4)

whereYij is the tensor of mechanical stresses,cijmn is the tensor of elastic constants, andεmn
is the strain tensor. The force law corresponding to equation (4) is

fi = ∂jYij . (5)

To study electromechanics or magnetomechanics, a generalization is necessary. The law of
conservation of linear momentum that links continuum mechanics and Maxwell’s theory of
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electromagnetism provides a basis for a macroscopic treatment of electromechanical [1] and
magnetomechanical interaction.

Ignoring thermal stresses, the force density of a dielectric that is exposed to an electric
field of sufficiently high amplitude can be expressed in the following form [3, 4]:

fi = ∂jYij + div EDEi − 1

2
EkEl ∂iεkl − 1

2
[rot( EE × ED)]i + ∂j8

es
ij (6)

whereEi andDi are components of the electric field strength and the electric displacement
vector, respectively, divED is the density of charge,εij are the components of the dielectric
tensor, and8es

ij represents the components of the electrostrictive stress tensor. Equation (6)
can be interpreted as an extension of Hooke’s law to include electrical phenomena. The
second term on the right-hand side of equation (6) corresponds to the Coulomb force. The
third term vanishes inside a homogeneous dielectric medium and becomes important when
inhomogeneities and discontinuities of the dielectric properties occur. It is the mathematical
expression of the observation that the medium with the higher dielectric constant will tend to
pull the less polarizable medium out of the electric field. A well-known application example
is Quinke’s method for measuring dielectric constants of liquids. The fourth term represents
couples and is often considered to be of minor importance. It vanishes ifEE and ED are parallel.

The tensor expression corresponding to equation (6) is

σij = Yij +EiDj − 1

2
δijEkDk − 1

2
(EiDj − EjDi) +8es

ij (7)

where the second and third terms on the right-hand side correspond to the form of the electro-
static stress tensor as it is frequently used in the technical literature. It should be stated that
reference [5] contains an error. The last term appearing in equation (4) of reference [5] has
not been taken into account in the tensor representation used in that article.

The force-density expression describing the magnetomechanical interaction, if thermal
influences are discarded, reads

fi = ∂jYij + [(rot EH)× EB]i − 1

2
HkHl ∂iµkl − 1

2
[rot( EH × EB)]i + ∂j8

ms
ij (8)

whereHi andBi are the components of the vectors of the magnetic field strength and magnetic
flux density, respectively, andµij are the components of the tensor of magnetic susceptibility.
The third and fourth tensors allow for an analogous interpretation as in the electric case.
[(rot EH) × EB]i is the ith component of the vector product of the curl of the magnetic field
strength vector and the magnetic flux-density vector, and represents the Lorentz force density
if the derivative of the electric displacement vector with respect to time vanishes.8ms

ij stands
for the components of the magnetostrictive stress tensor.

The corresponding stress tensor is

σij = Yij +HiBj − 1

2
δijHkBk − 1

2
(HiBj −HjBi) +8ms

ij . (9)

The physical motivation for such transitions from an expression in terms of force densities
to a tensor representation is that a tensor description of material properties fits well in the
thermodynamic framework used to interpret and evaluate measurements from a macroscopic
point of view [6–8].

In the literature, the second, third and fourth terms on the right-hand sides of equ-
ations (7) and (9) are designated as electrostatic or magnetostatic Maxwell stresses, respect-
ively. Comparison of equations (6) and (8) shows that the underlying force laws differ
fundamentally. It is surprising that the same tensor representation is obtained. To study
this problem, I restrict the analysis to Maxwell stresses.
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2. Method of analysis

To better understand what the two physical cases have in common and in which respects they
differ, a mathematical consideration is undertaken with the aim of working out the essential
features. The mathematical task consists in finding a tensor whose divergence corresponds to
a given vector function. Vector notation rather than index notation is used in this part, because
this should lead to the vector equations that will be used being written down in a clearer way.

Some steps will seem rather motiveless at first glance. In fact, the result has been found
by trial and error and by comparison with results given in the literature [3–4, 9–11]. While I
can present a consistent derivation of the stress tensor corresponding to the force laws studied
here, I am not aware of a direct integration method that works for any given force expression.

To find a more general relation between a vector function and the corresponding tensor
divergence, the following vector is considered:

Ef = EF div EG− EG× rot EF − 1

2
FkFl E∇akl − 1

2
rot( EF × EG) (10)

where the two vectorsEF and EG are interlinked by a symmetric matrix

Gi = aijFj . (11)

Theorem 1. It will be shown that

Ef = EF div EG− EG× rot EF − 1

2
FkFl E∇akl − 1

2
rot( EF × EG) = EDiv[S] + EDiv[W ] = EDiv[T ]

(12)

with

Sij = FiGj − 1

2
δijFkGk Wij = −1

2
(FiGj − FjGi)

Gi = aijFj aij = aji .

Proof. The last term appearing in equation (10) can easily be expressed as a tensor divergence
if the following relation is taken into account:

−1

2
rot( EF × EG) = EDivW whereWij = −1

2
(FiGj − FjGi). (13)

�
The symbol EDiv is used to indicate the difference between the tensor divergence and the usual
divergence div.W is an antisymmetric tensor. It follows from equation (13) that

Ef = EF div EG− EG× rot EF − 1

2
FkFl E∇akl + EDivW. (14)

To express the other three terms appearing in equation (14) as a tensor divergence, it is
convenient to use the following formula [12]:

EG× rot EF = E∇( EG · EF)− ( EG · E∇) EF − ( EF · E∇) EG− EF × rot EG. (15)

Combining equations (14) and (15), one has

Ef = EF div EG− E∇( EG · EF) + ( EG · E∇) EF + ( EF · E∇) EG + EF × rot EG− 1

2
FkFl E∇akl + EDiv[W ].

(16)

At this point, a vector–tensor relation is employed that can easily be verified by differentiation:

EF(div EG) + ( EG · E∇) EF − 1

2
E∇( EF · EG) = EDiv[S] with Sij = FiGj − 1

2
δijGkFk. (17)
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Using this relation, the vector function takes the following form:

Ef = EDiv[S] − 1

2
E∇( EF · EG) + ( EF · E∇) EG + EF × rot EG− 1

2
FkFl E∇akl + EDiv[W ]. (18)

In a further step, an expression is used that can be verified by componentwise comparison
taking equation (11) into account:

( EF · E∇) EG + EF × rot EG = aijFi E∇Fj + FkFl E∇akl. (19)

Equation (18) then reads

Ef = EDiv[S] − 1

2
E∇( EF · EG) + aklFk E∇Fl +

1

2
FkFl E∇akl + EDiv[W ]. (20)

After forming the gradientE∇(FkGk) = Fkakm E∇Fm +FkFm E∇akm + akmFm E∇Fk , one has

Ef = EDiv[S] +
1

2
akmFk E∇Fm − 1

2
Gk
E∇Fk + EDiv[W ]. (21)

Assuming thataij = aji holds, the two terms in the middle cancel out and equation (12) is
obtained as the final result.

3. Application to physical force laws

With equation (12), a mathematical expression has been found that contains the electro-
mechanical and magnetomechanical problems presented in the introduction as special cases.

A first conclusion that holds for both physical situations is that the symmetry of the tensor
aij , which represents either the dielectric tensorεij or the tensor of magnetic susceptibilities
µij , was important in the derivation.

SubstitutingEE for EF , ED for EG, andεij for aij , equation (21) can be compared with equ-
ations (6) and (7). It can be concluded that the force densities are identical if rotEE vanishes.
This corresponds to a physical situation in which the right-hand side of the Maxwell equation
rot EE = −∂t EB is equal to zero.

ReplacingEF by EH , EG by EB andaij by µij and making a comparison with equations (8)
and (9), one finds that the magnetomechanical phenomena considered here are also contained
as a special case under the condition that divEB = E0 holds, which is equivalent to a Maxwell
equation.

For a physical interpretation and further analysis, it might be useful to note that the Maxwell
stress tensorT given by equation (12) can be decomposed into a symmetric part and a ‘hydro-
static’ part, if the standard decomposition into a symmetric tensor and an antisymmetric tensor
is applied to the tensor represented byFiGj :

Tij = FiGj − 1

2
δijFkGk − 1

2
(FiGj − FjGi) = 1

2
(FiGj + FjGi)− 1

2
δijFkGk. (22)

4. Numerical examples

To predict the stresses at the surface of a given material quantitatively, the dielectric or magnetic
properties of the material and of the material that has an interface with it have to be taken into
account. This can be made clear by working through an example.

The starting point for calculating the stress at a surface induced by a fieldFi is to consider
the superposition of the Maxwell stress tensors of the two media, which are labelled I and II
here:

Uij = T II
ij − T I

ij . (23)
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It is assumed that the field strengthF II
i in medium II is known and that it only has a component

in the z-direction. The induced stress in thez-direction at a surface with its normal vector
pointing in thez-direction will now be calculated.

First, the Maxwell stress tensors are considered separately. UsingF II
1 = 0 andF II

2 = 0,
it follows from equations (22) and (11) that

T II
33 =

1

2
aII

33(F
II
3 )

2. (24)

Combining of equations (22) and (11) applied toT I
33 with equations (23) and (24) gives

U33 = 1

2
aII

33(F
II
3 )

2 +
1

2
(F I

1G
I
1 + F I

2G
I
2)−

1

2
(F I

3a
I
31F

I
1 + F I

3a
I
32F

I
2 + F I

3a
I
33F

I
3). (25)

To find an expression in terms of the known field strengthF II
i , the continuity conditions

that follow from the Maxwell equations have to be applied. The continuity condition for the
transverse components of the field strength allows one to conclude that

F I
1 = 0 (26)

and

F I
2 = 0 (27)

and to simplify equation (25) accordingly:

U33 = 1

2
aII

33(F
II
3 )

2 − 1

2
aI

33(F
I
3)

2. (28)

The continuity of the normal component of the corresponding flux density gives another equ-
ation:

GI
3 = GII

3 . (29)

Using equations (26), (27) this can be written as follows:

aI
33F

I
3 = aII

33F
II
3 . (30)

Combining equations (28) and (30), the final expression for the normal stress acting at the
boundary of the media I and II is obtained:

U33 = 1

2
aII

33

(
1− a

II
33

aI
33

)
(F II

3 )
2. (31)

Formula (31) can be applied to stresses at the surface of a solid material exposed to air or
in contact with a liquid in a homogeneous field. It can also be applied to predict the stresses
at the boundary of two immiscible fluids or at the surface of a liquid covered with a gas, if
the applied field can be assumed to be homogeneous to a good approximation. It should be
noted that the consideration of electroded surfaces, which are often used in electromechanics,
demands a modification of the analysis.

Finally, some numerical examples will be given.
In the magnetic case, equation (31) can be written as

U33 = 1

2
µII

33

(
1− µ

II
33

µI
33

)
(H II

3 )
3.

Taking the valuesχr = −12.9× 10−6 for LiF andχr = −14.0× 10−6 for NaCl from the
literature [13], arbitrarily settingH II

3 = 0.636× 106 N V−1 s−1, and usingµr = 1 +χr and
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µ = µ0µ
r with µ0 = 1.257× 10−6 V s A−1 m−1, andµr,air = 1.000 0004, the following

values are obtained for the normal stress at a surface exposed to air:

LiF: U33 = 3 N m−2

NaCl:U33 = 4 N m−2.

The same crystals can also serve as examples for the dielectric case. The low-frequency
dielectric constants of LiF and NaCl are 9.03 and 5.92 [14], respectively. Considering an
applied electric field of 106 V m−1 and usingε = ε0ε

r with ε0 = 8.8542×10−12 A s V−1 m−1

and

U33 = 1

2
ε0

(
1− 1

εr

)
(EII

3 )
2

for the stress at the surface of the dielectric crystal covered by air, one has

LiF: U33 = 4 N m−2

NaCl:U33 = 4 N m−2.

5. Conclusions

Equation (12) is helpful for organizing a systematic representation of electromechanical and
magnetomechanical forces acting on solids or liquids. It gives some insight into under which
physical conditions a simple transition from the force law to the tensor representation or vice
versa is possible. The considerations presented here are valid for any material symmetry, but
are restricted to ‘linear materials’, i.e. higher-order terms that might be necessary to describe
ferroelectric and ferromagnetic materials are not included. The analogy on the ‘tensor level’
can be exploited as a tool to translate results found in electromechanics into magnetomechanical
results, for example.
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